5 research outputs found

    Algorithmic Primitives for Quantum-Assisted Quantum Control

    Full text link
    We discuss two primitive algorithms to evaluate overlaps and transition matrix time series, which are used to construct a variety of quantum-assisted quantum control algorithms implementable on NISQ devices. Unlike previous approaches, our method bypasses tomographically complete measurements and instead relies solely on single qubit measurements. We analyse circuit complexity of composed algorithms and sources of noise arising from Trotterization and measurement errors.Comment: 9 pages, comments welcom

    Group Structure in Correlations and Its Applications in Cryptography

    Get PDF

    End-to-End Secure Messaging with Traceability Only for Illegal Content

    Get PDF
    As end-to-end encrypted messaging services become widely adopted, law enforcement agencies have increasingly expressed concern that such services interfere with their ability to maintain public safety. Indeed, there is a direct tension between preserving user privacy and enabling content moderation on these platforms. Recent research has begun to address this tension, proposing systems that purport to strike a balance between the privacy of \u27\u27honest\u27\u27 users and traceability of \u27\u27malicious\u27\u27 users. Unfortunately, these systems suffer from a lack of protection against malicious or coerced service providers. In this work, we address the privacy vs. content moderation question through the lens of pre-constrained cryptography [Ananth et al., ITCS 2022]. We introduce the notion of set pre-constrained (SPC) group signatures that guarantees security against malicious key generators. SPC group signatures offer the ability to trace users in messaging systems who originate pre-defined illegal content (such as child sexual abuse material), while providing security against malicious service providers. We construct concretely efficient protocols for SPC group signatures, and demonstrate the real-world feasibility of our approach via an implementation. The starting point for our solution is the recently introduced Apple PSI system, which we significantly modify to improve security and expand functionality

    ZEBRA: SNARK-based Anonymous Credentials for Practical, Private and Accountable On-chain Access Control

    Get PDF
    Restricting access to certified users is not only desirable for many blockchain applications, it is also legally mandated for decentralized finance (DeFi) applications to counter malicious actors. Existing solutions, however, are either (i) non-private, i.e., they reveal the link between users and their wallets to the authority granting credentials, or (ii) they introduce additional trust assumptions by relying on a decentralized oracle to verify anonymous credentials (ACs). To remove additional trust in the latter approach, we propose verifying credentials on-chain in this work. We find that this approach has impractical costs with prior AC schemes, and propose a new AC scheme ZEBRA that crucially relies on zkSNARKs to provide efficient on-chain verification for the first time. In addition to the standard unlinkability property that provides privacy for users, ZEBRA also supports auditability, revocation, traceability, and theft detection, which adds accountability for malicious users and convenience for honest users to our access control solution. Even with these properties, ZEBRA reduces the gas cost incurred on the Ethereum Virtual Machine (EVM) by 14.3x when compared to Coconut [NDSS 2019], the state-of-the-art AC scheme for blockchains that only provides unlinkability. This improvement translates to a reduction in transaction fees from 176 USD to 12 USD on Ethereum in May 2023. Since 12 USD is still high for most applications, ZEBRA further drives down credential verification costs through batched verification. For a batch of 512 layer-1 and layer-2 wallets, the transaction fee on Ethereum is reduced to just 0.44 USD and 0.02 USD, respectively, which is comparable to the minimum transaction costs on Ethereum

    Post-Quantum Privacy Pass via Post-Quantum Anonymous Credentials

    Get PDF
    It is known that one can generically construct a post-quantum anonymous credential scheme, supporting the showing of arbitrary predicates on its attributes using general-purpose zero-knowledge proofs secure against quantum adversaries [Fischlin, CRYPTO 2006]. Traditionally, such a generic instantiation is thought to come with impractical sizes and performance. We show that with careful choices and optimizations, such a scheme can perform surprisingly well. In fact, it performs competitively against state-of-the-art post-quantum blind signatures, for the simpler problem of post-quantum unlinkable tokens, required for a post-quantum version of Privacy Pass. To wit, a post-quantum Privacy Pass constructed in this way using zkDilithium, our proposal for a STARK-friendly variation on Dilithium2, allows for a trade-off between token size (85–175KB) and generation time (0.3–5s) with a proof security level of 115 bits. Verification of these tokens can be done in 20–30ms. We argue that these tokens are reasonably practical, adding less than a second upload time over traditional tokens, supported by a measurement study. Finally, we point out a clear advantage of our approach: the flexibility afforded by the general purpose zero-knowledge proofs. We demonstrate this by showing how we can construct a rate-limited variant of Privacy Pass that doesn\u27t not rely on non-collusion for privacy
    corecore